
LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

At Exascale,
Will Bandwidth Be Free?

Samuel Williams
Lawrence Berkeley National Laboratory

SWWilliams@lbl.gov

1

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Background…

!  Exascale machines will provide orders of magnitude greater
potential performance and memory capacity.

!  We will use those machines for new science / analysis capabilities
and not simply to run larger problems with finer grids.

!  Thus we cannot rely on having larger local working sets to
amortize other artifacts of system performance.

!  We must be focused on the impact of exascale on important
applications and not certain benchmarks

2

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Overarching questions…

!  Given there are 100M-1B lines of legacy code, we need to know
how well today’s apps (as written today) will run at exascale?
(need a pre-silicon answer)

!  When codes are predicted to perform poorly (less than the exaflop
expectorations), what constrained their performance (software,
architecture, algorithm)

!  How can these performance deficiencies be fixed?
"  new compilation techniques
"  programming models
"  algorithms
"  architectural research

!  If it is addressed, what is the ultimate performance potential.

3

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Today, Flop’s are Free

!  Over the last few decades, improvements in peak flop/s have
quickly outstripped improvements in peak bandwidth.

!  Today, it is >50x more expensive to move a word from DRAM than
to perform a floating-point operation on it.

!  The kernels in most real applications exhibit such limited data
locality that there is O(1) words of data movement per floating-point
operation.

!  With data movement now the primary bottleneck to performance,
some quip that “flops are free”

!  This paradigm is not invalidated just because one can find or
construct a benchmark with sufficient locality to be compute-bound
(linpack).

4

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

What about at Exascale?

!  The lack of locality will persist (flops are still free)
!  However, a new set of challenges may emerge…

"  synchronization across thousands of cores (this overhead is required for
OpenMP and CUDA threading constructs)

"  insufficient parallelism (expressed or inherent) in kernels
"  complex data movement interactions on both inter-core and inter-node

networks

!  If these displace data movement as the preeminent bottleneck, then
in general, data movement (bandwidth) may seem free !
"  Today, flop/s are over provisioned given the lack of locality in real apps
"  At Exascale, Bandwidth may be over provisioned due to a lack of

parallelism in real applications.
"  This rule of thumb for exascale wouldn’t be invalidated just because one

can find or construct (e.g. STREAM) a benchmark for which bandwidth
or flop/s is the bottleneck.

5

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Overhead of Synchronization
(Coarse vs. Fine-grained Parallelism)

6

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Overheads for Threading

!  OpenMP-threaded applications are in effect bulk synchronous…
"  …sequential code…
"  …OpenMP region (with implied barrier at end)…
"  …sequential code…

!  MPI communication can similarly act as a synchronization point.
!  This overhead for synchronization sets limits on the application of

fine-grained parallelism.

!  We can model the execution of a loop nest as some function of…
"  computation (flop’s)
"  data movement
"  synchronization overhead (e.g. OpenMP overheads)

!  When the cost data movement is high, it seems like “flops are free”,
but when the cost of synchronization is high, it will seem like
data movement is free…

7

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Overheads for Threading

!  Consider a nondescript application
where threading is applied in bulk
to units of work (e.g. matrices,
vectors, boxes…)

!  Each unit requires a threading
construct to start, run, synchronize,
and terminate. (e.g. omp parallel
region or CUDA kernel)

8

8.E+09

8.E+10

8.E+11

8.E+12

8.E+09 8.E+10 8.E+11 8.E+12
Ef

fe
ct

iv
e

B
an

dw
id

th

Pin Bandwidth

512MB
64MB
8MB
1MB

!  Assuming data movement would
nominally dominate, we can easily
model the effective bandwidth as a
function of…
"  the processor’s pin bandwidth
"  the size of the unit of work
"  fixed 10us overhead (no worse

when we have 100x more cores)

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

1.0%

10.0%

100.0%

8.E+09 8.E+10 8.E+11 8.E+12
%

 o
f P

ea
k

B
an

dw
id

th

Pin Bandwidth

1MB
8MB
64MB
512MB

Overheads for Threading

!  …viewed as a fraction of the pin
(peak) bandwidth…

!  For today’s architectures (left) it is
easy to get near peak bandwidth.

!  At exascale, the usual approach to
threading computation on objects
less than 8MB (e.g. an 643 grid),
will never achieve better than
10% of peak bandwidth !!

!  In fact, threading coarse 512MB
objects only attains 87% of pin
bandwidth.

9

!  Similar conditions arise on compute-limited kernels…
!  To attain 90% of peak (10TF), each processor needs to perform

approximately 100 million floating-point operations between synchronization
points.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Overheads for Threading

!  We can also visualize the time
required to perform the loop nest.

!  For applications that apply coarse-
grained parallelism (purple) any
additional bandwidth is beneficial

!  Applications that attempt fine-
grained parallelization can not
exploit more than 1TB/s of
bandwidth if overheads remain
around 10us.

10

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

8.E+09 8.E+10 8.E+11 8.E+12
R

un
 T

im
e

Pin Bandwidth

512MB
64MB
8MB
1MB

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Overheads for Threading
(summary of issues)

!  If we were to simply compile and run an existing application on a
exascale processor, we may see minimal increases in performance
and may only attain 10% of peak bandwidth (and a smaller
fraction of peak flop/s).

!  Clearly, it is imperative we have tools today that …
"  precisely identify where application of TLP is inefficient so that the

codes can be fixed before the machine is on the floor (pre-silicon).
"  identify what the synchronization minimizing implementation is.

!  Vendors may use this information to drive their design point. i.e.
"  can they get by with 10us overheads at 10K cores?
"  or do they need sub microsecond overheads for global synchronization?

!  From a CS research perspective, knowing how critical this issue is,
allows us to quantify the importance of alternate execution and
threading models.

11

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Insufficient Parallelism ?

12

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Insufficient Parallelism in code

!  Thus far, we have assumed our effective bandwidth is simply peak
bandwidth amortized by overhead/synchronization time

!  Unfortunately, kernels as written today often attempt to apply a
simple #pragma omp parallel for construct to various loops
or iteration spaces.
"  In the multicore era with 4-8 cores, even short (64-iteration) outer loops

can be efficiently parallelized in this manner.
"  As the number of threads increases, load balancing will emerge (64

iterations on 14 SM’s or 57 cores).
"  Ultimately, some cores may not receive any loop iterations (128

iterations on 10K cores).

!  What’s the effect of under parallelizing a kernel?
"  The effect of insufficient parallelism on peak flop/s is obvious.
"  The effect on peak bandwidth can be subtle --- Specifically, how many

threads are needed to fully saturate the memory subsystem ?

13

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Insufficient Parallelism in code

!  We can model Little’s Law =
omnipresent concurrency
needed to fully utilize the
memory bandwidth.

14

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

B
an

dw
id

th
 (G

B
/s

)

Threads

Little's Law for CPU Bandwidth...

!  On today’s CPU architectures,
OOO+HW prefetchers can
inject sufficient concurrency per
thread to hit peak BW with a
subset of the cores.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Insufficient Parallelism in code

!  We can model Little’s Law =
omnipresent concurrency
needed to fully utilize the
memory bandwidth.

15

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

B
an

dw
id

th
 (G

B
/s

)

Threads

Little's Law for CPU Bandwidth...

!  On today’s CPU architectures,
OOO+HW prefetchers can
inject sufficient concurrency per
thread to hit peak BW with a
subset of the cores.

0.000

0.004

0.040

0.400

4.000

1 10 100 1000 10000

B
an

dw
id

th
 (T

B
/s

)

Threads

Little's Law for Exascale...

!  However on exascale architectures, where power-hungry OOO and
prefetchers have been eliminated in favor of multithreading, we need
10s of thousands of threads to get peak bandwidth.

!  Today, many applications may only express 64- to 128-way TLP. If
run at exascale, they may only attain 1% of peak bandwidth !!

!  Needing all the threads always running for max BW may cast doubt
on powering down cores to save energy when BW limited.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Insufficient Parallelism in code
(summary of issues)

!  Need tools (or info from vendors) that…
"  quantify the relationship between TLP and effective bandwidth.

(today, we simply run benchmarks like stream)
"  highlight how a processor responds to increasing the number of

streams per thread (today, on BGQ, having too many threads can
cause contention in the prefetchers can impede net bandwidth)

"  precisely identify regions of applications that are under
parallelized and quantify the penalty.

"  provide a high-water mark for parallelism. When algorithmic high-
water mark is less than the demands of the processor, significant
algorithmic rework is mandated.

16

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Do we have to worry about
NoC Topologies as well ?

17

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

On-Chip Network (NoC)…

!  When we had simple on-chip networks (e.g.
star or crossbars), performance was readily
understood and could be easily modeled.

18

C C C C

M

C C C C

M M M M

!  unfortunately, programmers (let alone
software or runtimes) lack intuition for even
simple topologies likes rings and meshes.

!  how differently do applications perform on
these two NoC topologies? C C C M

C C C C

M

C C C

C C C C

M

C

M

C

C C C

C C C C

M

C C C

C C C C

M

C

M

C

M

!  When scaled to 1000’s of cores, modeling
and simulation tools will be essential in
predicting and understanding performance.

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

On-Chip Network (NoC)…

!  Unfortunately, with scalable yet complex NoC topologies…
"  memory bandwidth and latencies may vary from core to core.
"  requisite concurrency will vary from core to core (overprovision?)

!  Moreover, highly-optimized applications will perform complex, on-
chip inter-thread data exchanges avoid DRAM bottlenecks.
"  This creates a complex interaction between NoC topology and the

communication pattern
"  programmers are ill-equipped to quantify these effects (intuition fails)

!  We cannot assume core injection bandwidth is the bottleneck
anymore than we can assume DRAM bandwidth is the bottleneck.

!  The NoC may be the bottleneck for real applications.

19

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

On-Chip Network (NoC)
… summary of issues

!  We must be focused on real application drivers and not contrived
benchmarks that highlight a particular NoC topology…

!  We tools that …
"  determine if streaming DRAM bandwidth is sensitive to NoC

topology in the presence of 10’s of thousands of threads/requests.
"  can identify which real codes / kernels are sensitive to on-node

(inter-thread) synchronization and data exchanges.
"  can quantify the performance of complex data exchanges for various

NoC topologies and parameters expected in exascale machines.
"  how placement of threads (or variability in the placement of threads)

effects performance or latency.
"  Does variability demand new approaches to load balancing?
"  Would novel NoC topologies/functionality enable new algorithms?

!  Static analysis may address some of these, but increasingly
component simulation or processor emulation are required

20

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Algorithms and
Distributed Memory

21

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Algorithmic Effects and MPI
(Global Interconnect)

!  Many algorithms have >O(N) computational complexity
!  At exascale…

"  although we may have 100x more total (NVRAM) memory per node,
exascale is not about finer meshes. It is about enabling new science.

"  We may run lots of similarly sized “solves” per node as today on
1-10x more nodes than today (perhaps 10x bigger overall).

"  Larger problems may require more iterations, but message size may not
increase significantly.

!  We need to run scaling experiments to understand the
algorithmic effects that increase time-to-solution.

!  We need network models and simulators that allow us to
understand the performance challenges of real applications
"  P2P communication on smallish messages
"  limited injection rates (MPI_THREAD_PARALLEL is rare)
"  collectives at full machine scale

22

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Summary

23

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Summary…

!  Just as a lack of locality makes flop/s seem free today, we’ve
enumerated a number of hazards that might make bandwidth seem
free at exascale for the key applications we have today.

!  Rather than dictating solutions, we have enumerated a list of key
questions that need to be answered via modeling and simulation.

!  Using the results from this effort will allow one to identify where the
major roadblocks are on the road to exascale.

24

F U T U R E T E C H N O L O G I E S G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 25

Acknowledgements

!  All authors from Lawrence Berkeley National Laboratory were supported by
the DOE Office of Advanced Scientific Computing Research under contract
number DE-AC02-05CH11231.

LAWRENCE BERKELEY NATIONAL LABORATORY

F U T U R E T E C H N O L O G I E S G R O U P

Questions?

26

